Best linear forecast of volatility in financial time series.
نویسنده
چکیده
The autocorrelation function of volatility in financial time series is fitted well by a superposition of several exponents. This case admits an explicit analytical solution of the problem of constructing the best linear forecast of a stationary stochastic process. We describe and apply the proposed analytical method for forecasting volatility. The leverage effect and volatility clustering are taken into account. Parameters of the predictor function are determined numerically for the Dow Jones 30 Industrial Average. Connection of the proposed method to the popular autoregressive conditional heteroskedasticity models is discussed.
منابع مشابه
A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملA Fractal Forecasting Model for Financial Time Series
Financial market time series exhibit high degrees of non-linear variability, and frequently have fractal properties. When the fractal dimension of a time series is non-integer, this is associated with two features: (1) inhomogeneity— extreme fluctuations at irregular intervals, and (2) scaling symmetries— proportionality relationships between fluctuations over different separation distances. In...
متن کاملAn Engineering Approach to Forecast Volatility of Financial Indices Irwin
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract t...
متن کاملAn Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2004